A (k+3)/2-approximation algorithm for monotone submodular k-set packing and general k-exchange systems
نویسنده
چکیده
We consider the monotone submodular k-set packing problem in the context of the more general problem of maximizing a monotone submodular function in a k-exchange system. These systems, introduced by Feldman et al. [9], generalize the matroid k-parity problem in a wide class of matroids and capture many other combinatorial optimization problems. We give a deterministic, non-oblivious local search algorithm that attains an approximation ratio of (k + 3)/2 + for the problem of maximizing a monotone submodular function in a k-exchange system, improving on the best known result of k + , and answering an open question posed by Feldman et al. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
Improved Approximations for k-Exchange Systems
Submodular maximization and set systems play a major role in combinatorial optimization. It is long known that the greedy algorithm provides a 1/(k + 1)-approximation for maximizing a monotone submodular function over a k-system. For the special case of k-matroid intersection, a local search approach was recently shown to provide an improved approximation of 1/(k+ δ) for arbitrary δ > 0. Unfort...
متن کاملSolving Packing Integer Programs via Randomized Rounding with Alterations
We give new approximation algorithms for packing integer programs (PIPs) by employing the method of randomized rounding combined with alterations. Our first result is a simpler approximation algorithm for general PIPs which matches the best known bounds, and which admits an efficient parallel implementation. We also extend these results to a multi-criteria version of PIPs. Our second result is ...
متن کاملOn k-Column Sparse Packing Programs
We consider the class of packing integer programs (PIPs) that are column sparse, where there is a specified upper bound k on the number of constraints that each variable appears in. We give an improved (ek + o(k))-approximation algorithm for k-column sparse PIPs. Our algorithm is based on a linear programming relaxation, and involves randomized rounding combined with alteration. We also show th...
متن کاملSubmodular Maximization over Multiple Matroids via Generalized Exchange Properties
Submodular-function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy sampling, and maximum facility-location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has...
متن کاملOn maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012